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An analysis is made of the interactive heat transfer problem involving turbulent forced 
convection and radiation in the thermal development region of a gas pipe flow. A source of 
distortion of temperature and heat transfer rates is usually attributed to the presence of 
thermal radiation in high-temperature gas flows. In particular, this paper is concerned with a 
situation wherein an absorbing-emitting gas having a fully developed turbulent velocity 
enters an isothermal pipe with black walls. The turbulent model adopted for the velocity 
profile involves the solution of one differential equation for the kinetic energy of turbulence. 
Under the idealization of gray gas, the radiation contribution is modeled by a differential 
method, the so-called method of moments, that circumvents the partial integrodifferential 
equation typical of this kind of problem. Accordingly, the new formulation governing the 
combined heat exchange process accounts for a coupled system consisting of a partial 
differential equation for temperature and an ordinary differential equation for the irradiation. 
The former is solved by a hybrid methodology using the method of lines in conjunction with 
a control volume discretization in the radial direction only. Similarly, the latter is discretized 
by control volumes too. Solutions of the resulting initial value problem were obtained 
numerically by a Runge-Kutta-Fehlberg scheme, which deals successively with the 
associated system of algebraic equations. Remarkably rapid convergence was achieved by 
adopting a coordinate transformation that clusters grid points near the wall. Results based 
on 10 lines are presented for the axial distributions of bulk temperature and total Nusselt 
numbers as a function of the controlling parameters of the combined heat exchange 
process. The numerical predictions have been compared with the available results, and the 
agreement was satisfactory for all cases tested. 
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Introduction 

Transfer of heat by simultaneous convective and radiative 
transfer at high temperatures and high heat fluxes has become 
increasingly important in the analysis and design of high- 
temperature gas-cooled nuclear reactors (HTGR), advanced 
energy conversion devices, furnaces, combustors, etc. These, 
and many other applications, have provided the impetus for 
research on radiation transfer and on combined convection 
radiation in participating media. Further information is given in 
a recent survey by Viskanta.1 In such applications, momentum, 
energy and radiation transport equations must be solved 
simultaneously in order to determine local temperatures and 
heat transfer rates in the media, unless radiation is either very 
strong or very weak. Under these extreme conditions, either the 
dominant mode only need to be considered or the minor flux can 
be superposed onto the major flux. However, in flow 
applications where radiation and turbulent convection are 
coprincipal heat transfer mechanisms, coupling between these 
different models of energy transfer is unavoidable, and 
consequently the descriptive equations are interlinked. 

Accounting for the influence of radiation on the local heat 
transfer in the thermal entrance region of ducts is a difficult 
problem. The difficulties are mainly related to the transport 
processes of the controlling mechanisms of radiation and 
turbulent convection. In the former, the energy balance is 
usually expressed in terms of a nonlinear integrodifferential 

equation, while in the latter, suitable turbulence models have to 
be incorporated into the energy equation. 

Nichols 2 studied exclusively the influence of absorption of 
radiation on the temperature profile and heat transfer to a 
medium flowing turbulently in an annulus. Landram e t  al.  3 and 
Larsen et  al .  4 treated the thermally developed region in 
turbulent pipe flow invoking optically thin gas radiation. The 
analysis of Ref. 4 includes some experimental data for water 
vapor also. Tsou and Kang 5 analyzed the turbulent flow of a 
radiating gas as a conjugate problem in the fluid domain. These 
authors allowed for the propagation of axial radiation upstream 
of the heat exchange section. 

A number of analyses dealing with internal gas flows have 
assumed fully developed temperature distribution, which 
reduces the partial integrodifferential equation of energy to an 
ordinary integrodifferential equation. However, Kurosaki 6 and, 
more recently, Chawla and Chan 7 have found that, under strict 
laminar conditions, total Nusselt numbers increase downstream 
of the position of minimum rather than approach an asymptotic 
value as in the case of pure convection. This peculiarity is 
particularly notorious when radiation is strong compared to 
conduction. 

The complexity of turbulent radiating flows suggests that 
the gray gas condition be studied first. According to Tien 8, 
investigations of this simple model for flow in tubes results in 
great insight, providing first-order approximations and also 
increased understanding of more general phenomena. For  this 
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reason, an analysis of the turbulent heat exchange process in the 
entrance region of a pipe, assuming gray conditions, was 
undertaken. Conversely, one of the main problems in dealing 
with combined forced convection and radiation is the large 
computation time needed for a reliable prediction of 
temperature distributions in the gas flow. Thus, it becomes 
important to seek alternative formulations that may simplify the 
radiation transport equation. In view of this, various 
approximate differential formulations have been developed in 
the past. Among these, the spherical harmonics, the method of 
moments, the multiple flux model, and the discrete ordinate 
method provide means to obtain higher-order approximate 
solutions to the equation of radiative transport (see Ozisik9). 
Additionally, it has been shown by Krook 1° that the first 
moment method and the P 1 approximation of the spherical 
harmonics are entirely synonymous. This similarity is equally 
valid for the two-flux model in one-dimensional cases. 
Therefore, this equivalent approach is being adopted in the 
present study, which results in a conventional partial differential 
equation for energy accounting for a source term that depends 
on both temperature and irradiation. This equation is coupled 
to a rather simple ordinary differential equation where the 
dependent variable (the radial variable) is the irradiation itself. 
The hydrodynamic aspects of the problem have been handled by 
the (K, L)-model of turbuence reported by Rodi. 1~ The use of 
this model furnishes the fully developed velocity profile, which is 
an input for the energy equation. 

Although a wide variety of numerical techniques could be 
used to solve the problem in question, one that is particularly 
well suited for solving the descriptive system of partial 
differential equations involving two independent variables is 
the method of lines (MOL) described by Liskovets. a2 This 
methodology has been successfully applied by Campo and 

P~rez 13 for the prediction of a complex problem related to 
laminar mixed convection in vertical pipes. These phenomena 
are governed by three strongly coupled partial differential 
equations. 

With this background using the method of lines, our aim is to 
analyze the above-mentioned convective-radiative problem, 
wherein the radial discretization steps in the set of differential 
equations is performed by the control volume approach 
implemented by Patankar. ~4 This combination gives rise to a 
new method of lines with control volumes (MOLCV). Results 
based on coarse grids having 10 lines unequally distributed 
along the pipe radius are presented for global quantities, such as 
the mean bulk temperature distribution and the total heat 
transfer rate. 

Problem formula t ion  

Consider a fully developed turbulent gas flowing inside a 
circular pipe. At x = 0, the gas temperature is uniform and equal 
to T e and for x > 0 the outer surface of the pipe is maintained at 
T w. To initiate the study, the participating gas is assumed to be 
gray, emitting, absorbing, and having constant thermophysical 
properties. In addition, viscous dissipation effects are 
considered negligible. Under these idealizations, the descriptive 
conservation equations in the thermal entrance region of the 
pipe can be written as 

0 . . . . .  r(v + v,) (1) 
p dx  r dr  

~ - - =  r e + v ,  d ivq  ~ (2) 
~x r ~r L \ ~r~/ ~r J pcp 

Nomencla ture  
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C r ,  C D  
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G 
G* 
Ka 
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K + 

k 
L 
L + 
N 
NUT 
Pr 
P qr 

qw 
R 
r 

r *  

r + 

Re 
T 
Trof 

van Driest's constant, A + = 26 
Specific heat at constant pressure, J/kg K 
Constants of turbulence model: C, = 0.548, 
C D = 0.164 
Tube diameter, m 
Total irradiation, W/m 2 sr 
Dimensionless total irradiation, Equation 5 
Total volumetric absorption coefficient, m -  
Turbulent kinetic energy, m2/s 2 
Dimensionless turbulent kinetic energy, 
K + = K / u  2 
Thermal conductivity, W/m K 
Turbulence length scale, m 
Dimensionless turbulence length scale, L+=LuJv  
Radiation-conduction parameter, Equation 5 
Total Nusselt number, Equation 16 
Prandtl number, Equation 5 
Pressure, Pa 
Radiation flux vector, W/m 2 
Wall heat flux, W/m 2 
Pipe radius, m 
Radial coordinate, m 
Dimensionless radial coordinate, Equation 5 
Dimensionless wall radial coordinate, r + =  ruJv 
Reynolds number 
Absolute temperature, K 
Reference absolute temperature, K 

t 
U 

U m 

U + 

U~ 

X 

X* 

Y 
y+ 

Dimensionless temperature, Equation 5 
Axial velocity, m/s 
Mean velocity, m/s 
Dimensionless velocity, u + = u/u~ 
Shear velocity, u~ = z,,/p 
Axial coordinate 
Dimensionless axial coordinate, Equation 5 
Distance from wall, m 
Wall coordinate, y+ = yu~/v 

Greek letters 
0t 

P 

~t 
v? 
t7 

(7 t 

"C w 

"~'R 

Thermal diffusivity, mZ/s 
Extinction coefficient, m-1 
Wall emissivity 
Density, kg/m 3 
Kinematic viscosity, m2/s 
Turbulent diffusivity, m2/s 
Dimensionless turbulent diffusivity, vt + = vt/v 
Stefan-Boltzmann constant, W/m 2 K 4 
Turbulent Prandtl number 
Wall shear stress, N/m 2 
Optical thickness, Equation 5 

Subscripts 
e Entrance 
b Bulk 
w Wall 
c Conduction 
r Radiation 
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where •t and a T designate the turbulent diffusivity and the 
turbulent Prandtl number, respectively. In the above equations, 
the conventional notations are defined in the Nomenclature. 
The term divq r, which corresponds to thermal radiation, is 
retained here in recognition of its importance in participating 
gas flows at high temperature. In the present study, the method 
of moments is adopted in order to determine an approximate 
solution of the radiation transport equation. Accordingly, the 
radiative heat flux vector qr is expressed in terms of the total 
irradiation G, as follows: 

div qr= _Ka(G _ 4 a T  4) (3) 

where the governing equation for G is 

OZG+! O ( r O G ~ = 3 f l K a ( G - 4 a T ' )  (4) 
dX 2 ~r \ Or,] 

Details of these derivations are fund in Osizik. 9 At this 
juncture, it should be added that scattering has been neglected in 
the formulation of these equations. By introduction of the 
dimensionless quantities 

t = T/Tref, r* = r/R, x* = x /RPe  

Pr = v/~, Pe = umD/O~ (5) 

N = aRT3a/k,  z R = KaR, G* = G/4aT4ra 

where T~¢f is defined as a reference temperature, Equations 2 ~  
are transformed to 

1 fi 0t 1 ~ [ ( + / 2 ]  - r* l + P r . v _  + 4 N z R ( G * - t  4) (6) 
2 U m 0X* F* Or* a t / 

1 02G * 1 ~ ( r ,  0G*\/ 2 , 
pe / Ox,2 t - ~  Or* \ ~fi-r* J =3rn(G ~ t 4 ~  (7) 

Inspecting Equation 7 from physical grounds, in general, it 
may be added that for gas flows (Pr =0.7) in small-to-moderate 
diameter pipes Pe>> 1. An approximate guideline for the 
threshold of axial thermal radiation has been reported by 
Pearce ~ ~ and is reproduced in Appendix A. Consequently, the 
first term of the LHS of Equation 7 associated to the axial 
transport of thermal radiation may be discarded. This 
conclusion has been corroborated independently by Echigo et 
al)5 and by Campo and JarrinJ 6 These authors solved the 
conjugate version of the laminar problem under study here, and 
showed that, under those circumstances axial radiation 
penetrates one or two diameters upstream of the origin of the 
heat exchange section. Undoubtedly, this effect is expected to be 
much smaller in turbulent flow regimes. Therefore, Equation 7 
may be conveniently reduced to an ordinary differential 
equation. That is 

1 d / , d G * \  
r* drr* ~r ~-r, ) = 3 ~ ( G * - t ' )  (8) 

Note that the same set of equations, i.e., Equations 6 and 8, may 
be also obtained employing the two-flux model for the intensity 
of radiation originally proposed by Milne-Eddington. 9 

Conversely, the relevant boundary conditions assigned to 
Equations 6 and 8 are expressed in dimensionless form as 
follows: 

t=te,  x*=O (9) 

Ot 
=0,  r*=0  (10) 

Or* 

de* 
=0,  r *=0  (11) 

dr* 

t = t  w, r*= 1 (12) 

dG* 3 / e w \ * 
r*=m 113) 

dr ~ -  

The pipe-wall boundary conditions for G* given by Equation 13, 
controlling the radiative exchange at r*= 1, is examined in 
Appendix B. 

The solution methodology for this set of equations will be 
delineated shortly. Meanwhile, the physical quantities of 
interest for practical applications of internal forced convection 
exposed to isothermal wall conditions are the mean bulk 
temperature distribution, tb(X*), 

, $1o t(x*, r*)u(r*)r* dr* 
tb(X )= ~ 0 ~  (14) 

and the local surface heat flux qw(X*), 

qw(X*) = qCw(X* ) + qrw(x* ) (15) 

The components of the preceding equation are 

c _ k  OT 
qw= Or ,=R (15a) 

and 

1 ddrG= n (15b) 
q~'-  3K, 

describing the local conductive and the local radiative transfer 
at the pipe-wall, respectively. These quantities lead to the 
traditional definition of the total Nusselt number 

2qwR 
Nu T -  (16) 

k(rw - rb) 

Hence, combining Equations 13, 15, and 16, one can write 

N u  T = tw--tb [ 0r*l:=l-4g (G*-t4w) (16a) 

In this equation, the first term of the RHS corresponds to q~, and 
has been calculated using a new finite difference formulation for 
the temperature gradient at the wall. This formulation is very 
accurate for coarse grids as those used in MOLCV and was 
developed in Ref. 18. Meanwhile, the second term of the RHS 
describes qr and has been evaluated in a direct way by the 
method of moments. 

In light of the foregoing, it should be emphasized that 
calculation of the total Nusselt number Nu T has been performed 
with the sole purpose of comparing our results against others 
published in the open literature. Nevertheless, the total heat 
transfer rate in a pipe of length L may be easily determined from 
an energy balance between the stations x = 0 and x = L. It relates 
the bulk temperature ratio Tb/T,e f to a so-called heat transfer 
efficiency f~, defined as 

= QT/Qideal (16b) 

Here QideaJ corresponds to the ideal heat transferred in an 
infinitely long pipe under identical thermal conditions. In view 
of this approach, the simple relation 

f~ = r e -  tbL (16C) 
te--tw 

allows for a physical and direct calculation of the total heat 
transfer rate ( 0 < x < L ) ,  once the mean bulk temperature 
distribution is known at x = L .  Notice that the traditional 
approach to calculate the total heat transfer via the local Nusselt 
number is much more elaborate. It requires the numerical 
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integration of both distributions for the bulk temperature and 
for the local Nusselt number. The average values of these 
quantities are then introduced into the so-called Newton's 
equation of cooling. 

Model for turbulent transport 

Calculation of the temperature distribution in the thermal 
entrance region requires a priori knowledge of the velocity and 
eddy-diffusivity profiles fi and vt, respectively in the gas flow. In 
this work, the (K, L)-model of turbulence is used, in which the 
distribution of K is determined by solving the balance equation 
of turbulent kinetic energy, together with the equations 
associated to the mean flow. Some closure assumptions are 
made in modeling the terms appearing in these equations, to 
interrelate the variables fi, K, and L only, the latter being 
prescribed algebraically. Accordingly, the turbulent kinetic 
energy equation for the situation considered here is given by 
Rodi: t 1 

v+~__ )/du+\ 2 CD K+3/2 1 d ( v ~ d K  +) (17) 
0 = dr + L + ~-~- d~-  r+ t O. K d r+  

Moreover, on dimensional grounds, the eddy-diffusivity may be 
expressed in terms of K and L as 

v~ = C~K + 1/2L+ (18) 

In addition to Equations 17 and 18, the (K, L)-model requires 
that L + be prescribed algebraically. Following the 
recommendation of Cebeci, 19 it may be evaluated from the 
relation 
L + 
R+ - [0.14-0.08(1 - y +/R +) 2 -0.06(1 - y + / g  +) 4] 

x [ 1 - e x p ( - y + / A + ) ]  (19) 

Conversely, a first integration of the mean axial-momentum 
equation, Equation 1 for hydrodynamically developed 
conditions yields 

du + -r+/R + 
dr + - l + v t  + , u+(R+)=0 (20) 

At this stage, in order to reduce computational effort, 
integration of Equations 17 and 20 is started from the 
equilibrium region, say at y =  Y0 and subject to the customary 
approximate boundary conditions. Accordingly, in the 
equilibrium region, the diffusion of turbulent kinetic energy is 
small compared to its production and dissipation, as seen in 
Equation 17. Thus, neglecting the diffusion term in this equation 
leads to the following expression for the turbulent kinetic energy 
in the near wall region: 

~ =  -CD/L+ +x/(CD/L+)2 +4(CDC~)I's(r+/R+) (21) 

2CDCT 

Computed velocity distributions using the proposed 
procedure for a wide variety of turbulent conditions were 
compared against solutions published by Rieke 2° and Jischa 
and Rieke. 21 In general, good agreement was obtained and 
some typical comparisons in terms of thermal parameters will be 
discussed in the next sections. 

Solution methodology 

Once the formulation of the goveming equations is completed, a 
suitable numerical solution technique must be developed. In 
view of this, it is important to know the level of accuracy of the 

adopted solution technique in order to assess the validity of the 
turbulence model when predictions of velocity are compared to 
experimental data. Additionally, it is also desirable that the 
technique gives reliable results with a reasonable computer time 
as a by-product. It is a well-known fact that finite difference 
procedures have proven to be useful in meeting the foregoing 
goals. Accordingly, the system of Equations 6 and 8 subject to 
the boundary conditions expressed by Equations 9-12, was 
solved numerically by a hybrid method combining the method 
of lines and the control volume approach (MOLCV). 

The method of lines has been summarized by Liskovets ~ ~ as a 
technique that replaces a partial differential equation in two 
independent variables by an appropriate system of ordinary 
differential equations. If the independent variables are x* and r* 
as in Equation 6, then, the region of integration may be divided 
into strips parallel to one of the coordinates by lines of 
r* -- constant. Accordingly, the participating partial derivatives 
with respect to r* need to be represented by finite difference 
formulations. The salient feature in the implementation 
of the method of lines in this work is that the discretization 
process in the radial direction is carried out by the control 
volume approach devised by Patankar TM (see Figure 1). 
Correspondingly, this rather simple methodology generates a 
system of ordinary differential equations of first order, where the 
dependent variables are the temperatures along each line, in 
terms of the only independent variable: the axial coordinate x*. 
Likewise, to be consistent with MOLCV, discretization of the 
ordinary differential equation controlling the irradiation G*, 
Equation 8, has been performed using control volumes too. This 
procedure leads to an associate system of algebraic equations 
assigning a value of G* to each participating line. 

Variable grid spacing 
The finite difference formulas derived above allow the use of a 
variable grid in the r* direction, which permits shorter steps 
close to the wall and longer steps away from it. The use of a 
nonuniform grid is particularly important in this problem in 
order to accommodate the characteristic steep temperature 
profiles in the vicinity of the wall caused by the combined action 
of turbulence and thermal radiation. The variable grid used here 
has the property such that the ratio 

l n ~ * = 6  (22) 

is a constant, so that the distance to the ith grid line is 

Y, = Yo exp[(i - 1)6] (23) 

Figure 1 

Y; 

r; 
s 

Sketch for the transversal control volume 

AXIS 
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grid lines 

- --il.  
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yg 

T 7 7 ~ W A L L  

Figure 2 Location of the control volume interfaces 

where Yo is the distance between the wall and the first grid line. 
Moreover, the control volume interfaces are placed in a way that 
the relationship: 

In (y*/y'~) _ ! (24) 
In (y*/y~)  2 

holds (see Figure 2). In addition to this, from the wall inward, 
Equation 21 is used in conjunction with Equations 18 and 20 to 
provide the values of u + and vt + through the viscous sublayer. 
Throughout the remainder of the flow domain, the (K, L)-model 
given by Equation 17 is utilized. 

On the other hand, instead of using the customary linear 
formulation for the derivatives of the heat fluxes appearing in 
the discretized energy equation, Schuler and Campo 22 
suggested the use of a log-law, which physically represents a 
better approximation for the temperature profile in bounded 
turbulent flows. This approach is also implemented here, and as 
a direct result it reduces the computational effort drastically. In 
light of the foregoing, a log-profile for the radial temperature of 
the form 

t = a In(by*) (25) 

is supposed to exist between adjacent grid lines i and i +  I, 
respectively, where the temperature is assumed to be given. After 
performing some algebraic manipulations, the following 
expression can be employed to evaluate the heat fluxes through 
all control volume interfaces 

t3_t. _ t d - t  u (26) 
/gr* ~y* c 

Ultimately, the resulting coupled system of ordinary 
differential equations of first order and the system of algebraic 
equations were solved numerically by a Runge-Kutta-Fehlberg 
integration scheme in conjunction with the Thomas algorithm, 
respectively. 

R e s u l t s  a n d  d i s c u s s i o n  

To establish the accuracy of the numerical methodology 
proposed here, MOLCV, predicted convective Nusselt numbers 
were compared with available benchmark solutions for 
turbulent pipe flow of a transparent gas (no radiation) with a 
Prandtl number of 0.7. First, results of the computed asymptotic 
Nusselt number covering a wide spectrum of Re from 104 to l 0  6 
are listed in Table 1, along with the results of Kays, 23 
Gnielinski, 24 and Hallman et al. 25 Agreement seems to be 
satisfactory for all cases tested. Second, Figure 3 shows the 
computed Nusselt number in the thermal entrance region 
compared to the analytical solution of Kays 23 and the 
experiments of Hasegawa and Fujita 26 for Re= 50,000. Here 
again, both sets of results are found to be in good agreement 

with our predictions. The above-mentioned computations were 
based on a coarse grid having only ten lines nonuniformly 
distributed in the radial direction. The hybrid procedure 
developed in this paper proved to be stable, giving accurate 
results with a surprisingly small CPU time. 

Attention is now focused on the situation wherein turbulent 
convection and thermal radiation act simultaneously in the gas 
flow. It is appropriate to compare the present results with those 
of Tsou and Kang, 5 where the conjugate problem in the fluid 
domain of the thermal entrance region was solved using Green 
functions. In this reference, results are given only for the 
distributions of centerline temperature and total Nusselt 
number in both the upstream and downstream regions. In this 
respect, Figure 4 was prepared to illustrate the distributions of 
centedine temperature for Re=104 and N = 5  and 25, 
respectively. Both curves overlap with those reported in Ref. 5, 
except in the neighborhood of the origin for N = 25 where minor 
deviations are found. Obviously, these deviations are of 
negligible value. It should be added that preheating is allowed in 
Ref. 5 due to the conjugate character of the mathematical 
formulation. Additionally, Figure 5 depicts the comparison 
between the corresponding total Nusselt number distributions 
for the same set of parameters employed in Figure 4. The Nu T 
values reported in Ref. 5 are within a few percent of the present 
values, but the deviations in the vicinity of x / R = O  are of 
opposite sign. The crossing of the curves in this region is caused 
by the allowance of preheating in Ref. 5. 

Tab le  1 Comparison of the asymptotic Nusselt number Nuoo 
without radiation (Pr=0.7) 

Hallman Present 
Re Kays 23 Gnielinski 24 eta/. 25 work 

10,000 29.2 27.6 32.3 29.3 
20,000 50.8 49.3 52.3 50 
50,000 105 105 102 103 

100,000 184 186 1 72 1 78 
1,000,000 11 61 1169 - -  1160 

1.3 

I 
I 
I 

1.2 I 
I 
t 
l 
l 

"° \ 
N u ~  

R e = 50 OOO 

I.I t ~  Pr = 0.7 

~ , ,  KAYS 
, O HASEGAWA ond FUJITA 

- - A - -  PRESENT WORK 

I.O I t ~ b ' ~  -= ' I 

o IO 20 30 40 50 

x / D  

Figure 3 Comparison of the Nusselt number distribution in the 
absence of radiation 
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Figure 5 Comparison of the total Nusselt number distribution 

Inspection of the downstream portion of Figure 5 shows that 
the curves tend to attain a shallow minimum and then rise 
gradually. The location of these minima depends on the relative 
importance of the radiation mechanism compared to its 
conduction counterpart. Interestingly enough, for the largest 
x/R of the graph for weak radiation (N= 5) the rise is very 
small--just a few percent. On the other hand, the presence of 
strong radiation (N = 25) does not lend to the just mentioned 
behavior. Therefore, for strong radiation, the minimum Nusselt 
number is shifted toward the inlet and for no radiation the 
minimum Nusselt number coincides with the asymptotic value. 

As a side comment, it should be added that although the 
isothermal boundary condition gives rise to a thermally 
developed regime in which Nu is independent of x, this is not the 
case when strong radiation interacts with convection in the gas 
flow. Consequently, use of an asymptotic Nusselt number in the 
presence of strong radiation is physically unrealistic and is of 
little importance, other than to compare results between 
different computational procedures. 

One of the main objectives of this paper is to stress the fact 
that the quantity of most direct practical interest in internal 
flows is the mean bulk temperature distribution and its 
relationship to the total heat transferred as stated in Equation 
16c. Accordingly, the results for the mean bulk temperature 
distribution tb(X* ) are presented in Figures 6-9 for various 
representative convective and radiative parameters. General 

trends will be discussed here in detail. The initial discussion will 
be focused on Figure 6 which shows the influence of the 
radiation-conduction parameter N on the temperature 
development for fixed values of Re = 5 x 105 and z R = 1. Here, it 
is seen that an increase in N causes a rapid increase in t b at a 
given axial station x*. This behavior is due to the fact that, with 
increased N, the difference between the wall and fluid 
temperatures is more pronounced and thus radiative interaction 
between them becomes higher. As a consequence of this, the 
thermal entry length tends to decrease as N increases. 

To show the influence of the Reynolds number on combined 
heat transfer rates, results are presented in Figure 7 for the same 
radiation parameters as in the previous Figure 6, only changing 
the Reynolds number to Re= 105 . As expected, mean bulk 
temperature development is increased with increasing Reynolds 
number as a direct result of the increased value of eddy- 
diffusivity. In additign, the relative importance of radiation is 
decreased somewhat due to the faster development of 
temperature. For this case, it can be observed that the deviations 
between the curves of N =0  and N = 10 are small enough to 
neglect the radiative transfer contribution for engineering 

IO 

'°' ..2 ,o 
0.9 L ~ / z/ / / ~'w = I 0 

"r, i  
0.8 

t b 
0.7 

0.5 10 .4 i0 -3 10-2 i0 -I 
X* 

Figure 6 InfluenceofNonthemean bulktemperaturedistributions 
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applications. However,  this is not true for the case of 
R e = 4  x 105 where the corresponding curves are wide apart as 
can be noticed in Figure 6. 

Attention may now be turned to Figures 9 and 10 wherein the 
heat transfer enhancement characteristics of the gas flow will be 
discussed. Within this framework, the optical thickness of the 
gas has a definite physical meaning. In order to explore this, a set 
of parameters has been kept fixed as stated in the legends of 
these figures. From physical reasoning, it may be concluded that 
in the optically thin limit (z R ~ 0) where neither absorption nor  
emission takes place in the medium, the radiative contribution 
must vanish. Similarly, for the optically thick limit (2: R ~ 3 C ) ,  

thermal radiation is absorbed right at the point of its emission 
and the radiation contribution must vanish too. Therefore, as a 
result of this analysis, there should exist an opt imum optical 
thickness for which maximum heat transfer rates are achieved. 
This particular phenomenon is clearly demonstrated in Figures 
9 and l0 for thin and thick gases, respectively. After testing 
several values of zR, maximum distributions of mean bulk 
temperature are obtained for Za= I. This finding is manifested 
for other values of Re and is a clear testimony of a heat transfer 
enhancement. 

Conclusions 

In this paper, the combination of turbulent forced convection 
and thermal radiation has been examined for the flow of an 
absorbing-emitting gas in an isothermal pipe. The significant 
role played by radiation in the thermal entry region has been 
successfully represented by the method of moments. Meanwhile, 
the turbulent transport of the gas flow has been described by the 
(K,L)-model.  An explicit finite difference procedure for the 
prediction of turbulent radiating gas flows has been developed. 
The procedure takes advantage of the method of lines and the 
control volume discretization in the radial direction (MOLCV).  
It differs from the other methods in its directness, simplicity and 
great savings in computat ion time even with a coarse grid, and 
no lengthy iterative steps are required. The predictions agree 
well with other more elaborate numerical results published in 
the open literature for several situations involving turbulent 
flows. The success of the proposed M O L C V  methodology 

appears sufficiently encouraging to justify further work in which 
the gas will be modeled as nongray. 
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Equivalently, the radiation Peclet number RePr(zR/N ) is 
restricted by the inequality 

Re Pr(ZR/N ) >> 10 (A4) 

In this sense, condition (A4) is analogous to RePr,> 1 for the 
neglect of the axial temperature gradient in purely forced 
convection pipe flows. 

Appendix A: Examination of axial thermal 
radiation 

In order to obtain an a priori estimate of the conditions for 
which the axial transport of thermal radiation can be neglected, 
an order of magnitude argument similar to that used in 
boundary layer theory can be made. In fact, such an argument is 
given by Pearce 17 for laminar flow through circular tubes. 
Following his reasoning, which is based on the observation that 
the radiation flux in the optically thick limit will yield the most 
conservative criterion, the requirement is that 

c~T c~ 
pcpu ~- >> ~- q'x (A1) 

GX GX 

This inequality is a statement that the contribution of the axial 
component of the radiation heat flux is very much smaller than 
that of the axial convection term. In the optically thick limit, the 
radiation flux is given by 

16aT s ~T 
qrx = (A2) 

3K a dx 

This criterion, when written in the context of the present 
problem, becomes 

3pucpKaR >> 1 (A3) 
16aTraef 

Appendix B: Boundary condition for 
irradiation at the pipe wall 

Performing a radiative energy balance at the wall shown in 
Figure 10 gives the relation 

q~- = ( 1 -- ew)q + + ewaT4w (B 1) 

On the other hand, q+ and q~- are defined, via the method of 
moments, by 

q ~ = f  l l .~ r ldo9  G 1 t3G (B2) 
3- ~r>O 4 6 K  a Or 

and 

q~- = f~. ~r I d o =  -~ (B3) 
~r<0 6Ka t~r 

respectively, where the required integrations are carried out 
with help of Equation 3. 

Next, combining Equations B l-B3 leads to the appropriate 
boundary condition, which written in dimensionless form, 
results in 

dG* 3 
( ew "~ZR(G*--t~), r*= 1 (B4) 

dr* 2 \ 2 - e w , ]  
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